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Abstract 

Electromyography (EMG) is a technique that measures and records electrical activity 

in response to a nerve’s stimulation of the muscle. EMG signals are biomedical signals that 

represent electrical currents generated in muscles during their contraction. EMG signals 

acquired from muscles require advanced methods for detection, decomposition, processing 

and classification. Various mathematical techniques have received extensive attention and one 

of the most popular is Wavelet transform. Wavelet transform is a mathematical tool for 

analyzing data where the signal values vary at different scales, such as in EMG signals, so it 

is widely used in EMG signal processing systems. This study explored the potential of 

applying wavelet transform to EMG signals, which were collected using two sensors placed 

on the forearms of eight subjects performing individual finger flexions. We experimented 

with various mother wavelets and decomposition levels to determine the most effective 

combination. After evaluating the results obtained from training models, we selected the 

Daubechies wavelet (db1) with a second level of decomposition as the optimal solution. To 

generate meaningful features from the wavelet coefficients, we extracted time-frequency 

domain features, which were then used as inputs for training and testing machine learning 

models. We employed five classification algorithms: K-nearest neighbors, Support Vector 

Machine, Decision Tree, Random Forest, and Extreme Gradient Boosting (XGBoost). By 

evaluating and comparing the performance of these algorithms, we demonstrated enhanced 

accuracy and robustness achieved by the combination of wavelet transform and feature 

extraction in EMG signal analysis. 

Keywords: electromyographic signals, wavelet transform, feature extraction, machine 

learning  

 

Introduction 

Hands play a crucial role in almost every activity we perform daily, from simple tasks 

like gripping objects, typing and eating, to more complex actions such as writing or operating 

machinery. They are essential tools for interaction, communication and expressing creativity. 

For amputees, the loss of a hand can have a significant impact on their ability to perform 

these basic tasks independently, leading to challenges in daily living, reduced autonomy and a 

need for assistive devices or support. The statistics, which is maintained by the health 
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organization Amputee Coalition, presents the numbers for upper limb amputees worldwide, 

which show up to 3 million people who have upper limb amputation, of which 2.4 million 

people live in developing countries. There are a number of reasons that cause the amputation 

of a human limb, some of the most common reasons are due to diabetes, trauma, malignant 

diseases, cardiovascular diseases as well as congenital defects of the limb. There are 1.4 

million people who have forearm amputation, while 700,000 people have upper arm 

amputation, 200,000 people have shoulder amputation and 100,000 people have palm 

amputation[1].  

A prosthetic arm is an effective solution to overcome these obstacles. With the 

purpose of automating the control of prosthetic arms for more efficient use, 

electromyographic signals and machine learning models play a vital role in the refinement 

process. In the realm of healthcare and rehabilitation, the domain of prosthetic limbs has 

experienced a renaissance over the past decade. The traditional view of a prosthetic as merely 

a passive, cosmetic appendage has evolved. Today’s prosthetics boast functionality and 

adaptability that is leagues ahead of their predecessors. Historically, prosthetics were made 

from heavy materials like wood and metal. Today, thanks to advancements in materials 

science, we have lighter, more durable, and flexible materials like carbon fibers, silicone, and 

advanced polymers. These not only make the prosthetic limb lighter and more durable but 

also allow it to mimic the look and feel of natural skin, providing users with a more 

comfortable and natural experience. Looking toward the future, the incorporation of Artificial 

Intelligence (AI) into prosthetics opens up a realm of possibilities. AI-enabled prosthetic 

limbs can learn and adapt to the user’s habits and preferences over time, ensuring optimal 

functionality. By analyzing the user’s gait, grip and other movements, these smart limbs can 

make real-time adjustments, providing smoother and more natural motions[2]. Figure 1 shows 

the first mechanical prosthesis and today's modern electric prosthesis.  

 

 
Fig. 1. A representation of the first models of prosthetic  

hands and today's modern electric prosthetic hands 

 

Processing electromyographic (EMG) signals with wavelet transform is a process that 

has already been successfully applied in some cases for the classification of finger 

movements obtained from measurements taken from forearm muscles, presented in several 

studies [3-5]. 

Hristov et al. [3] use multiple machine learning algorithms to predict the flexion of 

individual fingers, as well as certain combined flexions, by using two EMG sensors placed on 

the forearm. The data is first preprocessed by extracting necessary time and frequency 

domain statistical features, and is then sent to each classifying algorithm individually. The 

best result of 96.6% was achieved with the XGBoost algorithm, followed closely by Extra 

Trees at 95.4% and Random Forest at 95.2%. Azhiri et al.[4] achieved an accuracy of around 

95.5% with a neural network with six hidden layers with 32 neurons per layer. The data are 
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collected with the help of two surface electrodes that are placed on the forearm of eight 

subjects and the database contains individual and combined movements of the fingers of the 

hand. After applying a wavelet transform to the data, where db1 is used as the mother wavelet 

with the second level of decomposition, they extract temporal features, where there are 12-

time domain conventional ones that are used frequently and 5 new ones that increase the 

classification accuracy. Azhiri et al. got their measurements from a volunteer performing six 

daily upper extremity movements and two forearm muscle channels. EMG signals were 

recorded on two muscles of the volunteer's right forearm with two pairs of surface electrodes. 

After EMG signals were obtained, they applied a wavelet transform to the data and tried 

several wavelets in order to determine which one gave the best results and at what level 

accordingly. With the reconstructed EMG signals and subsets of wavelet coefficients they 

extracted features that would be used in the classifier. They used mean absolute value and 

mean square root as the most famous characteristics. The results showed that only EMG 

features extracted from reconstructed EMG signals from first level and second-level detail 

coefficients provided an improvement in class separability in the feature space. 

The main goal of this study was to process EMG data using wavelet transform before 

training different machine learning models to recognize the movements that the person using 

the prosthetic arm attempted to make. The main emphasis was placed on the wavelet 

transform in order to see if it improved classification results. 

 

Electromyography 

Electromyography (EMG) is an electrodiagnostic test that assesses the health and 

function of the muscles and the nerves that control them by measuring the electrical activity 

of the skeletal muscles. The EMG sensor, that is the device that measures the electrical 

signals of the muscles during the process, detects the potential of the motor unit, which is a 

complex potential generated by the muscle fibers of the motor unit during the spontaneous 

activity of the muscle cells, and thus enables the analysis of the muscle activity. Muscle 

contraction and relaxation occur as a result of electrical stimulation, and these phenomena 

occur in several muscles, causing the body to move. When the brain tells the muscles to 

contract, the central nervous system, which is connected to the brain, releases 

neurotransmitters, and the neurons that receive those substances act to transmit electrical 

signals to the muscles, which prompt the body to move.  An example of what an EMG signal 

looks like, a signal measured when a muscle contracts and relaxes is shown in Figure 2. 

 

 
Fig. 2. EMG signal measured  

when a muscle contracts and relaxes 
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Electromyography is a valuable tool in medicine, rehabilitation and research, 

especially in understanding muscle function, diagnosing neuromuscular disorders and 

developing prosthetics or other assistive devices. When the body is unable to move for some 

reason, an EMG sensor is used to diagnose whether it is due to a problem in the nervous 

system or damage to the muscle that cannot be moved. When a muscle cannot contract or 

relax due to a problem with muscle function, the electrical signal can be measured by EMG. 

It is also possible to check the muscles that are activated during certain movements and 

activities and through this, it is possible to study more efficient movements and activities. 

Electromyography can be performed in two ways: a non-invasive method, i.e. surface 

EMG, and an invasive method, i.e. intramuscular EMG. Surface electromyography is used 

more widely because it has a great advantage in terms of stability. However, more accurate 

results are obtained with intramuscular electromyography than with surface 

electromyography, since a needle is inserted directly into the muscle. Figure 3 shows how the 

procedure of performing the two EMG methods looks like. 

 

 
Fig. 3. The surface EMG shown on the left side and the  

intramuscular EMG shown on the right side of the picture 

 

a. Surface electromyography 

Surface electromyography is the best known and most widely used method for 

measuring muscle contraction. It is recorded with surface electrodes, which measure the 

electrical potential difference between them, which means that at least two electrodes are 

needed. But, in addition to the two electrodes, a third electrode is also used, which is known 

as the reference electrode, which is placed on a part that is separated from the muscle in order 

to compare the measured potential with respect to it. In addition to the advantages obtained 

with surface electromyography, there are also some significant limitations when it is used. 

The biggest limitations are that it can be used in muscles that are close to the surface of the 

skin, subject to mutual interference between adjacent muscles, but also negatively affected by 

the thickness of the subcutaneous tissue. 

 

b. Intramuscular electromyography 

Unlike surface EMG, intramuscular electromyography records the electrical activity 

of the muscle by inserting two needle electrodes directly into the muscle and measuring the 

potential difference between them. As with the surface method, this method uses a reference 

electrode that can be a non-invasive surface electrode. Needle electrodes are solid devices 
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that can pierce the skin and muscle and be placed in the required location to measure the 

electrical potential. They are completely insulated except for the tip which is needed for 

measurement[6]. 

There are several levels of precision in this type of electrodes, and because of this, 

intramuscular electromyography is often used when high precision and accuracy of 

measurements are required. Figure 4 shows the Delsys electrodes used for EMG and their 

placement on the examinees. 

 

 
Fig.4. Delsys electrodes placed on the forearm of an examinee 

 

Data acquisition 

The dataset used and processed in this study was taken from a ready- made database 

from the Biosignals Repository[7]. The measurements were performed on eight subjects, six 

men and two women aged between 20-35 years who performed the necessary finger 

movements. The subjects did not have any neurological or muscular disorders.  

In the base there are ten classes of individual and combined movements of the fingers: 

flexion of each individual finger, i.e. thumb (T), index (I), middle finger (M), ring (R), little 

(L) and flexion of the combined thumb - index (T-I), thumb - middle (T-M), thumb - ring (T-

R), thumb - little (T-L) and finally the hand closes - fist (HC). Accordingly, the ten classes are 

shown in Figure 5. Six classes were used in this study, that is, all individual movements of the 

fingers and fist; the other 4 classes were omitted due to computational power.  

 

 
Fig. 5. Ten movements made by the examinees 

 

Before starting the measurements, subjects were seated in a chair with their supported 

arm fixed in a single position to eliminate the influence of limb movement on the generated 

EMG signals. During the measurements, subjects were instructed to tighten the finger being 

tested, hold for 5 seconds, and then release. Six measurements were taken for each finger and 

the fist, with short relaxation periods between each trial.  

The three electrodes are placed on the flexor digitorum profundus muscle located on 

the lower part of the forearm, and on the extensor digitorum communis muscle located on the 
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upper part of the forearm, while the third electrode is the reference electrode, as shown in 

Figure 6.  

After the signals were collected from the electrodes, they were amplified using a 

Delsys Bagnoli-8 amplifier with a total gain of 1000. Furthermore, a 12-bit analog-to-digital 

converter (National Instruments, BNC-2090) was used to sample the signal at 4000 Hz. 

 

 
Fig. 6. Placement of the electrodes 

 

Digital signal processing 

Before training and testing a classifier, the data must be preprocessed and prepared to 

ensure more accurate classification. Preprocessing of EMG signals involves several key steps 

to guarantee the reliability and accuracy of the data for subsequent feature extraction and 

signal classification. The first step is signal filtering, which uses two types of filters. The first 

is a bandpass filter with a finite impulse response, used to filter frequencies in the range of 

20-450 Hz, as this range contains most of the relevant information. The second is a notch 

filter, designed to remove electrical noise at 50 Hz from the power supply. 

 

(1) 

Once the data is filtered, the next preprocessing step is segmentation. Segmentation 

enhances feature extraction, reduces signal complexity and improves model training. 

Importantly, it minimizes the delay in movement, a critical factor for prosthetic arm users. To 

avoid noticeable delays, the segment duration is set to 250 ms, as the smallest delay users 

typically do not perceive is approximately 250 ms. With a sampling frequency of 4 kHz, each 

segment contains 1000 data points. 

 

 

Wavelet Transform 

The wavelet transform is a mathematical tool used in signal processing and analysis to 

decompose signals into their constituent components at different scales. It achieves this by 

breaking down the signal into a set of basic functions derived from contractions, expansions, 

and translations of a “mother” function Ψ(x), known as the wavelet. Wavelets are small, 



Paunkoska K. et al. Exploiting EMG signals for the recognition of finger flexions  
 

102 

 

localized, oscillating functions that vary in scale and frequency. This method enables the 

simultaneous measurement of time and frequency variations in non-stationary signals. During 

the wavelet transform process, the signal is convolved with a scaled and translated version of 

the selected wavelet (also known as the “mother” wavelet), which reveals the frequency 

components or coefficients at different time points. Scaling or dilation stretches or 

compresses the wavelet, while translation shifts it to different time positions. The wavelet 

transform decomposes noisy signals into sub-bands of higher and lower frequencies, with 

high-frequency components representing detailed coefficients and low-frequency components 

representing approximate coefficients[8]. 

A family of wavelets can be constructed from the mother wavelet Ψ(x), the wavelet 

has finite energy as well as zero mean value. The "mother" wavelet is chosen based on the 

characteristics of the signal or image and the nature of the application for which the transform 

is being used. The "daughter" wavelets Ψa,b (x) are formed by displacement (b) and 

contraction (a) of the "mother". Equation (1) defines the "daughter" wavelets. 

In this study, we used discrete wavelet transform due to the possible options of 

choosing level of decomposition on the original signal in order not to overload the computer 

power. During the process of choosing an appropriate "mother" wavelet, it is necessary to 

understand their properties. Regarding the properties possessed by the families of wavelets, 

we test the wavelets from the Daubechies family as the most compact. We test all of the 

wavelets starting from db1-db7 with corresponding levels from first to fourth and the best 

results and the chosen wavelet is db1 with second level of decomposition. The wavelet that 

we use is shown in Figure 7. 

 

 
Fig. 5. Wavelet db1 or Haar 

 

Feature extraction 

Feature extraction is a process used in machine learning to reduce the number of 

resources needed for processing without losing important or relevant information. One of the 

most important parts is choosing proper features and validity of methods for selected feature 

ability to extract these features in real time form. In other words, feature extraction involves 

creating new features that still capture the essential information from the original data but in a 

more efficient way. By employing techniques such as statistical measures, analysis in the time 

or frequency domain or advanced methods such as feature extraction based on deep learning, 

this process generates compact yet informative representations of the data[9]. 

Features are components that represent complex signals as signals with smaller 

dimensions. These are used as inputs to machine learning models, on which their predictions 
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are trained and tested. The EMG characteristics can be analyzed in time domain, frequency 

domain and time-frequency domain. The time domain is a representation of the 

characteristics of the signal in relation to time. Time domain features recognize the 

characteristics of a signal that characterize its temporal structure. An illustration of the 

characteristics of a signal in terms of frequency is the frequency domain representation. The 

frequency spectrum of some signal shows what frequency that signal relies on. The time-

frequency domain features administer the information about the temporal and spectral 

characteristics of the signal. 

In this study, we used time-frequency features. We choose frequency domain features 

such as Power Spectral Density, Entropy, Dominant Frequency, Total Power, Max-Min Drop 

Ratio, Mean Frequency, and Variance of Frequency. Typically, time domain feature extraction 

is performed from the underlying EMG signal, which is an advantage for EMG signals, since 

the original EMG signals are displayed with respect to time. The following time domain 

features were used in this study: 

• Mean, which calculates the mean value of the EMG signal amplitude over the sample 

length of the signal:  

 
• Standard deviation, which measures of how dispersed the data is relative to 

the mean: 

 
• Skewness, which represents relative measure of third-order cumulative signal 

irregularity and asymmetry: 

 
 

• Kurtosis, which measures distribution, peak probability, calculation or fourth-order 

cumulative calculation: 

 
• Integrated Absolute of Second Derivative, which captures the relative changes of the 

second derivative of a signal that acts as a filter to reduce noise: 

 
• Integrated Absolute of Third Derivative, similar to the previous feature, which 

captures the relative changes of the third derivative of the signal: 

 
• Integrated Exponential of Absolute Values, which amplifies large samples and 

suppresses small samples for all positive and negative samples: 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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• Integrated Absolute Log Values, which suppresses large samples and boosts small 

samples, where T is a threshold that must be tuned empirically:  

 
• Integrated Exponential, a characteristic that is similar to an integrated exponential of 

absolute values, where the only difference is between positive and negative samples, 

that is, it generally amplifies positive and suppresses negative samples:  

 
 

After forming the dataset comprised of the extracted features from the wavelet 

coefficients, we apply standardization procedure to further improve the performance of the 

models. 

 

Classification and results 

Machine learning is a key component within the broader field of artificial intelligence 

that employs statistical methods to empower computers with the ability to learn and make 

decisions autonomously, without the need for explicit programming. It is founded on the 

concept that computers can acquire knowledge from data, identify patterns, and draw 

conclusions with minimal human intervention. Classification is a technique that involves 

categorizing data into distinct classes. It is a recursive process that recognizes and groups 

data objects into pre-defined categories or labels. This technique is used to predict the 

outcome of a given problem based on input features. It can be applied to structured or 

unstructured data, and the classes are commonly known as target, label, or categories. The 

aim of classification is to assign an unknown pattern to a known class. For example, 

classifying emails as "spam" or "not spam" is a common application of classification[10].  

Before classification, the dataset was divided into training and testing sets. The 

training set consisted of 90% of the total dataset (6,480 data points) and the testing set 

comprised the remaining 10% (720 data points). The training set was used for training the 

algorithms through stratified 10-fold cross-validation. The testing set was reserved for the 

final evaluation on previously unseen data. Five different algorithms were used for 

classification:  

• K- Nearest Neighbors,  

• Support Vector Machine,  

• Decision Tree,  

• Random Forest,  

• Extreme gradient boosting (XGBoost).  

The F1 metric is an alternative metric for evaluating machine learning models that 

assesses a model's predictive skill by elaborating on its performance by classes rather than 

overall performance as done by accuracy. The F1 score of each of the five algorithms is 

presented in Figure 8, where we can observe that the best performer is XGBoost, while the 

worst is K- Nearest Neighbors.  

 

(9) 

(10) 
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Fig. 6. Classification results with F1 metric with time-frequency domain features 

 

Discussion 

As illustrated in Figure 8, the XGBoost classifier outperforms the other four 

classifiers, achieving a result of 93.2%. Closely following is the Random Forest classifier 

with 91.4%. Next in performance are the Support Vector Machine, K-Nearest Neighbors 

(KNN), and lastly, the Decision Tree classifier.  

To better visualize the results and errors encountered during training, we employed 

confusion matrices. These matrices provide a numerical breakdown of how many instances of 

each class were correctly and incorrectly predicted, as well as pinpointing the exact locations 

of classification errors. A confusion matrix is a square matrix where its dimensions 

correspond to the number of classes in the classification problem. For this particular task, the 

matrix is 6x6, reflecting the six distinct movements that need to be recognized. Figure 9  

 

 
Fig. 7. Confusion Matrix of the results from XGBoost 
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displays the confusion matrix for the XGBoost classifier, providing a detailed view of the 

model's performance. In the matrix, the rows represent the actual classes to which the signals 

belong, while the columns indicate the predicted classes. The values within each cell denote 

the number of signals that were predicted as each class. From the observation, it can be 

concluded that most of the movements were correctly classified with some slight deviations, 

most of which occurred in the thumb and index finger, while smaller errors were made in the 

middle finger and the most accurately classified were the fist and the little finger. 

An important enhancement to our approach involved the use of wavelet transform, 

which significantly influenced the results by providing better performance. Wavelet transform 

is a powerful signal processing technique that decomposes a signal into components at 

various scales, allowing for the extraction of both time and frequency information 

simultaneously. This is particularly beneficial for analyzing EMG signals, which are non-

stationery and exhibit variations over time. By applying wavelet transform, we were able to 

capture more relevant features from the EMG signals, leading to improved classification 

accuracy. 

The observed results were influenced by various factors, and it's crucial to recognize 

that some inherent errors may arise due to several uncontrollable variables. For instance, 

anatomical differences such as hand size, muscle structure and forearm thickness among 

subjects can affect the consistency of EMG signal patterns. Additionally, variations in EMG 

signal measurement methods including electrode placement, skin conductivity, and signal 

acquisition technique can introduce variability. The quality and sensitivity of the 

instrumentation used to capture EMG signals, as well as the algorithms employed for signal 

processing, are also critical factors. Furthermore, the anatomical nature of fingers. The 

distribution and density of muscle fibers, as well as the location and alignment of tendons, 

can vary greatly between individuals, resulting in differences in how electrical activity is 

generated and transmitted. These anatomical differences can cause variability in the EMG 

signals captured from different subjects, making it challenging to develop a one-size-fits-all 

model. By understanding and accounting for these anatomical variations, we can improve the 

accuracy and reliability of EMG-based assessments and applications. Addressing and 

understanding these anatomical variations is key to enhancing the accuracy and reliability of 

EMG-based assessments and applications. 

 

Conclusion 

In this study, we explored the use of wavelet transform for enhancing the 

classification of EMG signals related to finger flexion, aiming to uncover how its application 

can improve results. We focused on analyzing six distinct movements, that is, five individual 

finger movements and a fist using surface electromyography signals that were meticulously 

filtered, segmented and standardized. 

To prepare the dataset, we applied the Daubechies wavelet db1 with a level 2 

decomposition to extract wavelet coefficients. From these coefficients, we derived time-

frequency domain features, that later on were used as input features to train and test the 

machine learning models. Our comparison of different algorithms led us to conclude that 

XGBoost performed the best, achieving an accuracy score of 93.2% with the chosen db1 

wavelet and time-frequency domain features. While this result is excellent and promising, 

there is potential for further improvement through additional hyperparameter optimization 

and more detailed feature engineering to extract even more relevant information from the 

data. 

Future work should include investigating neural network architectures to fully 

leverage the wavelet coefficients and enhance signal classification performance. Employing 
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neural networks could offer a more efficient, accurate, and adaptable solution for real-world 

applications in terms of processing time, accuracy, and usability. 
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