DISRUPTION OF HAIR FOLLICLE IMMUNE PRIVILEGE IN ALOPECIA AREATA: ENIGMATIC MECHANISMS AND EMERGING CONCEPTS

Authors

  • Viktor Simeonovski University Clinic for Dermatology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Maja Dimova University Clinic for Dermatology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Marko Kostovski Institute of Microbiology and Parasitology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Julija Mitrova Telenta University Clinic for Dermatology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Elena Mircheska Arsovska University Clinic for Dermatology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Liljana Labachevska Gjatovska Institute of Microbiology and Parasitology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia

Keywords:

alopecia areata, immune privilege, hair loss, hair follicle

Abstract

Immune privilege (IP) is a specialized immunological state that protects certain tissues, including the hair follicle (HF), from immune-mediated destruction. The maintenance of hair follicle immune privilege (HFIP) is crucial for uninterrupted hair growth and is mediated by several mechanisms. These include the downregulation of major histocompatibility complex (MHC) class I molecules, the secretion of immunosuppressive cytokines such as transforming growth factor-beta (TGF-β) and alpha-melanocyte-stimulating hormone (α-MSH), and the recruitment of regulatory immune cells that suppress pro-inflammatory responses.

Additionally, the blood-hair follicle barrier limits immune cell infiltration, further preserving immune privilege. However, in alopecia areata (AA), HFIP collapses triggering an autoimmune attack against follicular structures. This breakdown is marked by increased antigen presentation, heightened expression of MHC class I and II molecules, and an influx of autoreactive cytotoxic CD8+ T cells. These T cells, particularly those expressing the NKG2D receptor, recognize stress-induced ligands on follicular keratinocytes and initiate a cytotoxic response. Interferon-gamma (IFN-γ) and interleukin-15 (IL-15) play central roles in amplifying inflammation by activating the JAK-STAT signaling pathway, further promoting immune cell infiltration and follicular destruction. Additional immune cells, including natural killer cells, dendritic cells, and macrophages, contribute to disease pathogenesis by enhancing antigen presentation and sustaining the inflammatory cascade. 

Given the central role of HFIP collapse in AA, therapeutic strategies aimed at restoring immune privilege represent a promising avenue for long-term disease management. Future research should focus on identifying key molecular regulators of HFIP and developing targeted interventions to re-establish immune tolerance within the hair follicle. 

References

Kiselev A, Park S. Immune niches for hair follicle development and homeostasis. Front Physiol. 2024 Apr 22;15:1397067. doi:10.3389/fphys.2024.1397067.

Bertolini M, McElwee K, Gilhar A, Bulfone Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol. 2020 Sep;29(9):1314 1325. doi:10.1111/exd.14155.

Mamelak AJ, Christiano AM. Immune Privilege Collapse and Alopecia Development. J Invest Dermatol. 2017;138(2):265–267. doi:10.1016/j.jisp.2017.10.014.

Paus R, et al. The hair follicle as an immune organ. Br J Dermatol. 2005;153(6):1097–1104. doi:10.1111/j.1365 2133.2005.06811.x.

Wang Y, et al. TGF beta signaling in health and disease: a double edged sword for stem cells? Cell Stem Cell. 2017;20(5):635–646. doi:10.1016/j.stem.2017.04.003.

Slominski A, et al. The role of melanocyte stimulating hormones in skin pigmentation and inflammation: implications for skin diseases and disorders. J Invest Dermatol. 2014;134(11):2679–2686. doi:10.1152/physrev.00044.2003.

Munn DH, et al. Inhibition of T cell proliferation by tryptophan catabolism through indoleamine 2,3 dioxygenase: a mechanism for tumor induced tolerance? J Immunol. 1999;162(11):6680–6689. doi:10.4049/jimmunol.162.11.6680.

Vivier E, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174(5):1054–1066. doi:10.1016/j.cell.2018.07.017.

Kloepper JE, et al. The human hair follicle: a unique organ with multiple roles in skin homeostasis and disease pathogenesis. Front Physiol. 2017;8:276.

Gilhar A, et al. Alopecia areata: a prototypic T cell autoimmune disease. J Invest Dermatol Symp Proc. 2005;10(3):198–201. doi:10.1111/j.1087 0024.2005.10030.x.

Iamsumang W, et al. Quality of life in patients with alopecia areata. J Eur Acad Dermatol Venereol. 2008;22(11):1303–1307. doi:10.1111/j.1468 3083.2008.02711.x.

Xing L, et al. Alopecia areata is driven by cytotoxic T lymphocytes. Nat Med. 2014;20(9):1042–1049. doi:10.1038/nm.3645.

McElwee KJ, et al. The pathogenesis of alopecia areata. Semin Cutan Med Surg. 1996;15(4):264–276. doi:10.1016/S1085 5629(96)80077 X.

Simonian N, et al. Natural killer cells in alopecia areata: increased expression. Exp Dermatol. 2013;22(8):552–554. doi:10.1111/exd.12169.

Smolensky M, et al. Interferon gamma in alopecia areata: a key player. J Invest Dermatol. 2007;127(8):1958–1966. doi:10.1038/sj.jid.5700750.

Nagasaki T, et al. CXCR3 ligands in alopecia areata: a possible role. J Dermatol Sci. 2004;36(1):1–8. doi:10.1016/j.jdermsci.2003.10.010.

Cottam HB, et al. Immune privilege collapse contributes to alopecia areata pathogenesis. J Clin Invest. 2017;127(12):4560–4570. doi:10.1172/JCI94913.

Duvic M, et al. Chemokine receptors involved in alopecia areata. J Invest Dermatol Symp Proc. 2005;10(3):198–201. doi:10.1038/jid.2010.260.

Lensing SF, Jabbari A. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Clin Exp Immunol. 2022;210(2):115–124. doi:10.1093/cei/uxab088.

Tan JJ, et al. The evaluation of JAK inhibitors on effect and safety in alopecia areata: A systematic review and meta-analysis. Front Immunol. 2023;14:1124567. doi:10.3389/fimmu.2023.1124567.

Xing L, Dai Z, Christiano AM. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Front Immunol. 2022;13:948811.

Lee S, et al. Approving, Using JAK Inhibitors for Better Alopecia Areata Outcomes. Am J Manag Care. 2024;30(4):167–169. doi:10.37765/ajmc.2024.94272.

King B, et al. Two Phase 3 Trials of Baricitinib for Alopecia Areata. N Engl J Med. 2022;386(18):1687–1699. doi:10.1056/NEJMoa2116957.

O’Shea JJ, et al. The JAK STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–328. doi:10.1146/annurev-med 051113 024537.

Ito T, Tokura Y. The role of cytokines and chemokines in the T cell mediated autoimmune process in alopecia areata. Exp Dermatol. 2014;23(11):787–791. doi:10.1111/exd.12512.

Ito T, et al. Understanding the significance of cytokines and chemokines in the pathogenesis of alopecia areata. Exp Dermatol. 2020;29(8):726–732. doi:10.1111/exd.14223.

Fukuyama M, et al. Alopecia areata: Current understanding of the pathophysiology and update on therapeutic approaches. J Dermatol. 2022;49(1):19–36.

Lintzeri DAC, et al. Alopecia areata – Current understanding and management. J Dtsch Dermatol Ges. 2022;20(1):59–90. doi:10.1111/ddg.14659.

Rudnicka L, et al. European expert consensus statement on the systemic treatment of alopecia areata. J Eur Acad Dermatol Venereol. 2024;38(4):687–694. doi:10.1111/jdv.19371.

Meah N, et al. The Alopecia Areata Consensus of Experts (ACE) study part II: Results of an international expert opinion on diagnosis and laboratory evaluation for alopecia areata. J Am Acad Dermatol. 2021;84(6):1594–1601. doi:10.1016/j.jaad.2020.12.062.

Mateos Haro M, et al. Treatments for alopecia areata: a network meta-analysis. Cochrane Database Syst Rev. 2023;10(10):CD013719.

Wang EHC, et al. JAK Inhibitors for Treatment of Alopecia Areata. J Invest Dermatol. 2018;138(9):1911–1916. doi:10.1016/j.jid.2018.04.012.

King B, et al. Efficacy and safety of ritlecitinib in adults and adolescents with alopecia areata: a randomised, double blind, multicentre, phase 2b 3 trial. Lancet. 2023;401(10387):1518–1529. doi:10.1016/S0140 6736(23)00854 4.

Younis N, et al. Microneedle Mediated Delivery of Immunomodulators Restores Immune Privilege in Hair Follicles and Reverses Immune Mediated Alopecia. Adv Mater. 2024;36(31):e2312088. doi:10.1002/adma.202312088.

Xu W, et al. Novel potential therapeutic targets of alopecia areata. Front Immunol. 2023;14:1148359. doi:10.3389/fimmu.2023.1148359.

Downloads

Published

2025-06-12

Issue

Section

Review Article