ASSOCIATION OF CCNG1 AND FDXR GENE EXPRESSION DURING RADIOTHERAPY WITH BIOCHEMICAL- AND LIFESTYLE-RELATED CONFOUNDING FACTORS IN BREAST CANCER PATIENTS

Authors

  • Katerina Trenceva Institute of Public Health of the Republic of North Macedonia, Skopje, Republic of North Macedonia
  • Aleksandar Eftimov Institute of Pathology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Aleksandar Petlichkovski Institute of Immunobiology and Human Genetics, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Dushko Lukarski University Clinic of Radiotherapy and Oncology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Ilir Ismail University Clinic of Radiotherapy and Oncology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Meri Peshevska University Clinic of Radiotherapy and Oncology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Nikola Vasev University Clinic of Radiotherapy and Oncology, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia
  • Sonja Topuzovska Institute of Medical and Experimental Biochemistry, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia

Keywords:

radiotherapy, confounding factors, breast cancer, FDXR, CCNG1, gene expression

Abstract

Introduction: CCNG1 and FDXR are well-established gene expression biomarkers of IR exposure. Expression alterations during radiotherapy (RT) in patients with different types of cancer has seldom been investigated, along with their potential associations with biochemical- and lifestyle-related confounding factors, that would help elucidate specific changes in RT response and individualize RT in breast cancer patients.

Materials and methods: A non-randomized, controlled, open-trial clinical study was performed in 57 breast cancer patients (intervention group, IG) and 56 healthy individuals (control group, CG). Gene expression was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in leukocytes of peripheral blood samples.

Results: A significant up-regulation of FDXR was observed up to 48 h after the first RT fraction, with no significant expression alterations of CCNG1 at 24 h and 48 h. Fold changes of CCNG1 were slightly lower (1.13-1.23) compared to FDXR (1.49-2.08). RT-induced FDXR and CCNG1 expression alterations could not be significantly associated with patient age, increased WBC count (> 9x109/L), increased C-reactive protein (CRP) during RT (> 5 mg/L) and decrease of increased CRP values during RT. Patients with diabetes mellitus had lower CCNG1 fold changes 24 h post-RT (0.89 ± 0.3 vs. 1.23 ± 0.6); identical was the finding for smokers and non-smokers (1.06 ± 0.5 vs. 1.22 ± 0.7).

Conclusion: RT-induced CCNG1 and FDXR changes could not be significantly associated with the examined biochemical- and lifestyle confounding factors, except for diabetes mellitus and smoking.

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209-249. doi: 10.3322/caac.21660.

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer 2020. [cited 2022 Feb 9]. Available from: https://gco.iarc.fr/today.

Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 2019; 30(8): 1194-1220. doi: 10.1093/annonc/mdz173.

Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet 2011; 378(9804): 1707-1716. doi: 10.1016/S0140-6736(11)61629-2.

EBCTCG (Early Breast Cancer Trialists’ Collaborative Group). Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014; 383(9935): 2127-2135. doi: 10.1016/S0140-6736(14)60488-8.

Whelan TJ, Pignol JP, Levine MN, Julian JA, MacKenzie R, Parpia S, et al. Long-Term Results of Hypofractionated Radiation Therapy for Breast Cancer. N Engl J Med 2010; 362: 513-520. doi: 10.1056/NEJMoa0906260.

Palumbo E, Piotto C, Calura E, Fasanaro E, Groff E, Busato F, et al. Individual Radiosensitivity in Oncological Patients: Linking Adverse Normal Tissue Reactions and Genetic Features. Front Oncol 2019; 9: 987. Available from: https://www.frontiersin.org/article/10.3389/fonc.2019.00987/full.

Human radiosensitivity: report of the independent advisory group on ionising radiation. London: Health Protection Agency; 2013.

Amundson SA, Grace MB, McLeland CB, Epperly MW, Yeager A, Zhan Q, et al. Human in vivo Radiation-Induced Biomarkers: Gene Expression Changes in Radiotherapy Patients. Cancer Res 2004; 64(18): 6368-6371. doi: 10.1158/0008-5472.CAN-04-1883.

Amundson SA, Do KT, Shahab S, Bittner M, Meltzer P, Trent J, et al. Identification of Potential mRNA Biomarkers in Peripheral Blood Lymphocytes for Human Exposure to Ionizing Radiation. Radiat Res 2000; 154(3): 342-346. doi: 10.1667/0033-7587(2000)154[0342:iopmbi]2.0.co;2.

Paul S, Barker CA, Turner HC, McLane A, Wolden SL, Amundson SA. Prediction of In Vivo Radiation Dose Status in Radiotherapy Patients using Ex Vivo and In Vivo Gene Expression Signatures. Radiat Res 2011; 175(3): 257-265. doi: 10.1667/RR2420.1.

Macaeva E, Mysara M, De Vos WH, Baatout S, Quintens R. Gene expression-based biodosimetry for radiological incidents: assessment of dose and time after radiation exposure. Int J Radiat Biol 2019; 95(1): 64-75. doi: 10.1080/09553002.2018.1511926.

Abend M, Badie C, Quintens R, Kriehuber R, Manning G, Macaeva E, et al. Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study. Radiation Res 2016; 185(2): 109-123. doi: 10.1667/RR14221.1.

Kultova G, Tichy A, Rehulkova H, Myslivcova-Fucikova A. The hunt for radiation biomarkers: current situation. Int J Radiat Biol 2020; 96(3): 370-382. doi: 10.1080/09553002.2020.1704909.

Paul S, Amundson SA. Development of gene expression signatures for practical radiation biodosimetry. Int J Radiat Oncol Biol Phys 2008; 71(4): 1236-1244. doi: 10.1016/j.ijrobp.2008.03.043.

Knops K, Boldt S, Wolkenhauer O, Kriehuber R. Gene Expression in Low- and High-Dose-Irradiated Human Peripheral Blood Lymphocytes: Possible Applications for Biodosimetry. Radiat Res 2012; 178(4): 304-312. doi: 10.1667/rr2913.1.

Ghandhi SA, Smilenov LB, Elliston CD, Chowdhury M, Amundson SA. Radiation dose-rate effects on gene expression for human biodosimetry. BMC Med Genomics 2015; 8(1): 22. Available from: http://bmcmedgenomics.biomedcentral.com/articles/ 10.1186/s12920-015-0097-x.

Kabacik S, Mackay A, Tamber N, Manning G, Finnon P, Paillier F, et al. Gene expression following ionising radiation: Identification of biomarkers for dose estimation and prediction of individual response. Int J Radiat Biol 2011; 87(2): 115-129. doi: 10.3109/09553002.2010.519424.

Manning G, Kabacik S, Finnon P, Bouffler S, Badie C. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood. Int J Radiat Biol 2013; 89(7): 512-522. doi: 10.3109/09553002.2013.769694.

Budworth H, Snijders AM, Marchetti F, Mannion B, Bhatnagar S, Kwoh E, et al. DNA Repair and Cell Cycle Biomarkers of Radiation Exposure and Inflammation Stress in Human Blood. PLoS One 2012; 7(11): e48619. doi: 10.1371/journal.pone.0048619.

Paul S, Amundson SA. Gene expression signatures of radiation exposure in peripheral white blood cells of smokers and non-smokers. Int J Radiat Biol 2011; 87(8): 791-801. doi: 10.3109/09553002.2011.568574.

Srinivasan M, Rajendra Prasad N, Menon VP. Protective effect of curcumin on γ-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat Res 2006; 611(1-2): 96-103. doi: 10.1016/j.mrgentox.2006.07.002.

O’Brien G, Cruz-Garcia L, Majewski M, Grepl J, Abend M, Port M, et al. FDXR is a biomarker of radiation exposure in vivo. Sci Rep 2018; 8(1): 684. doi: 10.1038/s41598-017-19043-w.

Cruz-Garcia L, O’Brien G, Donovan E, Gothard L, Boyle S, Laval A, et al. Influence of confounding factors on radiation dose estimation in in vivo validated transcriptional biomarkers. Health Phys 2018; 115(1): 90-101. doi: 10.1097/HP.0000000000000844.

Zhang Y, Qian Y, Zhang J, Yan W, Jung Y-S, Chen M, et al. Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev 2017; 31(12): 1243-1256. doi: 10.1101/gad.299388.117.

Brzóska K, Kruszewski M. Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose. Radiat Environ Biophys 2015; 54(3): 353-363. doi: 10.1007/s00411-015-0603-8.

Kimura SH, Ikawa M, Ito A, Okabe M, Nojima H. Cyclin G1 is involved in G2/M arrest in response to DNA damage and in growth control after damage recovery. Oncogene 2001; 20(25): 3290-3300. doi: 10.1038/sj.onc.1204270.

Reimer CL, Borras AM, Kurdistani SK, Garreau JR, Chung M, Aaronson SA, et al. Altered Regulation of Cyclin G in Human Breast Cancer and Its Specific Localization at Replication Foci in Response to DNA Damage in p53+/+ Cells. J Biol Chem 1999; 274(16): 11022-11029. doi: 10.1074/jbc.274.16.11022.

Tichy A, Kabacik S, O’Brien G, Pejchal J, Sinkorova Z, Kmochova A, et al. The first in vivo multiparametric comparison of different radiation exposure biomarkers in human blood. Woloschak GE, editor. PLoS ONE 2018; 13(2): e0193412. https://doi.org/10.1371/journal.pone.0193412.

Sculley DG, Dawson PA, Emmerson BT, Gordon RB. A review of the molecular basis of hypoxanthine-guanine phosphoribosyltransferase (HPRT) deficiency. Hum Genet 1992; 90(3): 195-207. https://doi.org/10.1007/BF00220062.

Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 2004 23;313(4):856-62. doi: 10.1016/j.bbrc.2003.11.177.

Townsend MH, Felsted AM, Ence ZE, Piccolo SR, Robison RA, O’Neill KL. Failling from grace: HPRT is not suitable as an endogenous control for cancer-related studies. Mol Cell Oncol 2019; 6(2): 1575691. doi: 10.1080/23723556.2019.1575691.

de Jonge HJM, Fehrmann RSN, de Bont ESJM, Hofstra RMW, Gerbens F, Kamps WA, et al. Evidence Based Selection of Housekeeping Genes. Lichten M, editor. PLoS ONE 2007; 2(9): e898. doi: 10.1371/journal.pone.0000898.

Sedano JM, Ramos EI, Choudhari R, Harrison AL, Subramani R, Lakshmanaswamy R, et al. Hypoxanthine Phosphoribosyl Transderase 1 is upregulated, predicts clinical outcome and controls gene expression in breast cancer. Cancers 2020; 12(6): 1522. doi: 10.3390/cancers12061522.

Trenceva K, Eftimov A, Petlichkovski A, Jakjovski Z, Topuzovska S. CCNG1 and FDXR expression levels after radiation therapy in breast cancer patients. Acad Med J 2021; 1(2): 78-88.

Port M, Majewski M, Herodin F, Valente M, Drouet M, Forcheron F, et al. Validating Baboon ex Vivo and in vivo Radiation-Related Gene Expression with Corresponding Human Data. Radiat Res 2018; 189(4): 389-398. doi: 10.1667/RR14958.1.

Li S, Lu X, Feng J-B, Tian M, Wang J, Chen H, et al. Developing Gender-Specific Gene Expression Biodosimetry Using a Panel of Radiation-Responsive Genes for Determining Radiation Dose in Human Peripheral Blood. Radiat Res 2019; 192(4): 399-409. doi: 10.1667/RR15355.1.

Wolf I, Sadetzki S, Catane R, Karasik A, Kaufman B. Diabetes mellitus and breast cancer. Lancet Oncol 2005 6(2): 103-111. doi: 10.1016/S1470-2045(05)01736-5.

Reynolds P. Smoking and Breast Cancer. J Mammary Gland Biol Neoplasia 2013; 18(1): 15-23. doi: 10.1007/s10911-012-9269-x.

Andres SA, Bickett KE, Alatoum MA, Kalbfleisch TS, Brock GN, Wittliff JL. Interaction between smoking history and gene expression levels impacts survival of breast cancer patients. Breast Cancer Res Treat 2015; 152(3): 545-556. doi: 10.1007/s10549-015-3507-z.

Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Redox maintenance and concerted modulation of gene expression and signaling pathways by a nanoformulation of curcumin protects peripheral blood mononuclear cells against gamma radiation. Chemico-Biol Interact 2016; 257: 81-93. doi: 10.1016/j.cbi.2016.07.021.

Crane FL. Biochemical Functions of Coenzyme Q10. Journal of the American College of Nutrition 2001; 20(6): 591-598. https:// doi.org/10.1080/07315724.2001.10719063.

Alimohammadi M, Rahimi A, Faramarzi F, Golpur M, Jafari-Shakib R, Alizadeh-Navaei R, et al. Effects of coenzyme Q10 supplementation on inflammation, angiogenesis, and oxidative stress in breast cancer patients: a systematic review and meta-analysis of randomized controlled- trials. Inflammopharmacology 2021; 29(3): 579-593. doi: 10.1007/s10787-021-00817-8.

Wu D, Han B, Guo L, Fan Z. Molecular mechanisms associated with breast cancer based on integrated gene expression profiling by bioinformatics analysis. J Obstet and Gynaecol 2016; 36(5): 615-621. doi: 10.3109/01443615.2015.1127902.

Correa CR, Cheung VG. Genetic Variation in Radiation-Induced Expression Phenotypes. Am J Hum Genet 2004; 75(5): 885-890. doi: 10.1086/425221.

.

Downloads

Published

2022-06-15

Issue

Section

Original Articles