MICROBIOME AND MYCOBIOME IN CHRONIC WOUNDS
Keywords:
microbiome, mycobiome, chronic wounds, biofilmAbstract
Skin as the biggest organ with protective function in the human body, makes an equilibrium between microbial communities and immune system. Skin microbiome is defined as the genome of microorganisms found on the skin with which microorganisms have a complex relationship. Microbiota of healthy skin consists of resident and transient microorganisms. Two most common factors for delayed healing process in chronic wounds are infection and biofilm formation. Thus, it is important to analyze microbiome and mycobiome of chronic wounds.
References
Lejeune P. Contamination of abiotic surfaces: What a colonizing bacterium sees and how to blur it. Trends Microbiol 2003; 11(4): 179-184. doi: 10.1016/s0966-842x(03)00047-7.
Rendueles O, Ghigo JM. Multi-species biofilms: How to avoid unfriendly neighbors. FEMS Microbiol. Rev 2012; 36(5): 972-989. doi: 10.1111/j.1574-6976.2012.00328.x.
Kong KF, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol 2006; 296(2-3): 133-139. doi: 10.1016/j.ijmm.2006.01.042.
White C, Sharman AK, Gadd GM. An integrated microbial process for the bioremediation of soil contaminated with toxic metals. Nat Biotechnol 1998; 16(6): 572-575. doi: 10.1038/nbt0698-572.
Wilking JN, Zaburdaev V, De Volder M, Losick R, Brenner MP, Weitz DA. Liquid transport facilitated by channels in Bacillus subtilis biofilms. Proc Natl Acad Sci USA 2013; 110(3): 848-852. https://doi.org/10.1073/pnas.1216376110.
Olsson M, Järbrink K, Divakar U, Bajpai R, Upton Z, Schmidtchen A, et al. The humanistic and economic burden of chronic wounds: A systematic review. Wound Repair Regen 2019; 27(1): 114-125. doi: 10.1111/wrr.12683.
Martinengo L, Olsson M, Bajpai R, Soljak M, Upton Z, Schmidtchen A, et al. Prevalence of chronic wounds in the general population: systematic review and meta-analysis of observational studies. Ann Epidemiol 2019; 29: 8-15. doi: 10.1016/j. annepidem.2018.10.005.
Leaper D, Assadian O, Edmiston CE. Approach to chronic wound infections. Br. J. Dermatol 2015; 173(2): 351-358. doi: 10.1111/bjd.13677.
Wolcott RD, Hanson JD, Rees EJ, Koenig LD, Phillips CD, Wolcott RA, et al. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen 2016; 24(1): 163-174. doi: 10.1111/wrr.12370.
Loesche M, Gardner SE, Kalan L, Horwinski J, Zheng Q, Hodkinson BP, et al. Temporal Stability in Chronic Wound Microbiota Is Associated With Poor Healing. J Invest Dermatol 2017; 137(1): 237-244. doi: 10.1016/j.jid.2016.08.009.
Kalan LR, Meisel JS, Loesche MA, Horwinski J, Soaita I, Chen X, et al. Strain- and Species-Level Variation in the Microbiome of Diabetic Wounds Is Associated with Clinical Outcomes and Therapeutic Efficacy. Cell Host Microbe 2019; 25(5): 641-655.e5. doi: 10.1016/j.chom.2019.03.006.
Kalan L, Grice EA. Fungi in the Wound Microbiome. Adv Wound Care (New Rochelle) 2018; 7(7): 247-255. doi: 10.1089/wound.2017.0756.
Verbanic S, Shen Y, Lee J, Deacon J, Chen I. Microbial predictors of healing and short-term effect of debridement on the microbiome of chronic wounds. Biofilms Microbiomes 2020; 6: 21. https://doi.org/10.1038/s41522-020-0130-5.
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol. Rev 2019; 99(1): 665-706. doi: 10.1152/physrev.00067.2017.
Londahl M, Katzman P, Nilsson A, Hammarlund C. Hyperbaric oxygen therapy facilitates healing of chronic foot ulcers in patients with diabetes. Diabetes Care 2010; 33: 998-1003. doi: 10.2337/dc09-1754.
James GA, Ge Zhao A, Usui M, Underwood RA, Nguyen H, Beyenal H, et al. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds. Wound Repair Regen 2016; 24(2): 373-83. doi: 10.1111/wrr.12401.
Morgan SJ, Lippman SI, Bautista GE, Harrison JJ, Harding CL, Gallagher LA, et al. Bacterial fitness in chronic wounds appears to be mediated by the capacity for high-density growth, not virulence or biofilm functions. PLoS Pathog 2019; 15: e1007511. https://doi.org/10.1371/journal.ppat.1007511
Di Domenico EG, Farulla I, Prignano G, Gallo MT, Vespaziani M, Cavallo I, et al. Biofilm is a major virulence determinant in bacterial colonization of chronic skin ulcers independently from the multidrug resistant phenotype. Int J Mol Sci 2017; 18(5): 1077. doi: 10.3390/ijms18051077.
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35(4): 322-332. doi: 10.1016/j. ijantimicag.2009.12.011.
Zhou L, Zhang Y, Ge Y, Zhu X, Pan J. Regulatory Mechanisms and Promising Applications of Quorum Sensing-Inhibiting Agents in Control of Bacterial Biofilm Formation. Front Microbiol 2020; 11: 589640. doi: 10.3389/fmicb.2020.589640.
Bjarnsholt T, Kirketerp-Møller K, Jensen PØ, Madsen KG, Phipps R, Krogfelt K, et al. Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 2008; 16(1): 2-10. doi: 10.1111/j.1524-475X.2007.00283.x.
Hendricks KJ, Burd TA, Anglen JO, Simpson AW, Christensen GD, Gainor BJ. Synergy between Staphylococcus aureus and Pseudomonas aeruginosa in a rat model of complex orthopaedic wounds. JBJS 2001; 83(6): 855-661. doi: 10.2106/00004623-200106000-00006.
Mikamo H, Kawazoe K, Izumi K, Watanabe K, Ueno K, Tamaya T. Studies on the pathogenicity of anaerobes, especially Prevotellabivia, in a rat pyometra model. Infect Dis Obstet Gynecol 1998; 6(2): 61-65. doi: 10.1002/(SICI)1098-0997(1998)6:2<61:: AID-IDOG6>3.0.CO;2-A.
Dalton T, Dowd SE, Wolcott RD, Sun Y, Watters C, Griswold JA, et al. An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS ONE 2011; 6(11): e27317. doi: 10.1371/journal.pone.0027317.
Short B, Bakri A, Baz A, Wiliams C, Brown J, Ramage G. There Is More to Wounds than Bacteria: Fungal Biofilms in Chronic Wounds. Curr Clin Micro Rpt 2023; 10: 9-16. https://doi.org/10.1007/s40588-022-00187-x
Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature 2013; 498 (7454): 367-370. doi: 10.1038/nature12171.
Kalan L, Loesche M, Hodkinson BP, Heilmann K, Ruthel G, Gardner SE, et al. Redefining the chronic-wound microbiome: fungal communities are prevalent, dynamic, and associated with delayed healing. mBio 2016; 7(5): e01058-16. doi: 10.1128/ mBio.01058-16.
Chellan G, Shivaprakash S, Ramaiyar SK, Varma AK, Varma N, Sukumaran MT, et al. Spectrum and prevalence of fungi infecting deep tissues of lower-limb wounds in patients with type 2 diabetes. J Clin Microbiol 2010; 48(6): 2097-2102. doi: 10.1128/ JCM.02035-09.
Fatahinia M, Poormohamadi F, Mahmoudabadi AZ. Comparative study of esterase and hemolytic activities in clinically important Candida species, isolated from oral cavity of diabetic and non-diabetic individuals. Jundishapur J Microbio 2015; 8(3): e20893. doi: 10.5812/jjm.20893.
Dowd SE, Delton Hanson J, Rees E, et al.Survey of fungi and yeast in polymicrobial infections in chronic wounds. J Wound Care 2011; 20(1): 40-47. doi: 10.12968/ jowc.2011.20.1.40.
Mehra BK, Singh AK, Gupta D, Narang R, Patil R. A clinicomicrobiological study on incidence of mycotic infections in diabetic foot ulcers.ijss-sncom. INJSS 2017; 4: 50-54.
Allison DL, Willems HME, Jayatilake JAMS, Bruno VM, Peters BM, Shirtliff ME. Candida-bacteria interactions: their impact on human disease. MicrobiolSpectr. 2016; 4(3): 103-136. doi: 10.1128/microbiolspec.VMBF-0030-2016.
Kong EF, Tsui C, Kucharíková S, Andes D, Dijck PV, Jabra-Rizk MA. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. mBio 2016; 7(5): e01365-e01316. doi: 10.1128/mBio.01365-16.
Todd OA, Fidel PL Jr, Harro JM, Hilliard JJ, Tkaczyk C, Sellman BR, et al. Candida albicans Augments Staphylococcus aureus virulence by engaging the Staphylococcal agr Quorum Sensing System. mBio 2019; 10(3): e00910. doi: 10.1128/mBio.00910-19.
Vila T, Kong EF, Montelongo-Jauregui D, Van Dijck P, Shetty AC, McCracken C, et al. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence 2021; 12(1): 835-851. doi: 10.1080/21505594.2021.1894834.
Short B, Delaney C, McKloud E, Brown JL, Kean R, Litherland GJ, et al. Investigating the transcriptome of Candida albicans in a dual-species Staphylococcus aureus biofilm model. Front Cell Infect Microbiol 2021; 11: 791523. doi: 10.3389/fcimb.2021.791523.
Townsend EM, Sherry L, Kean R, Hansom D, Mackay WG, Williams C, et al. Implications of antimicrobial combinations in complex wound biofilms containing fungi. Antimicrob Agents Chemother 2017; 61(9): e00672. doi: 10.1128/AAC.00672-17.
Yu XY, Fu F, Kong WN, Xuan QK, Wen DH, Chen XQ, et al. Streptococcus agalactiae inhibits Candida albicans hyphal development and diminishes host vaginal mucosal TH17 response. Front Microbiol 2018; 9: 198. doi: 10.3389/fmicb.2018.00198.
Shing SR, Ramos AR, Patras KA, Riestra AM, McCabe S, Nizet V, et al. The fungal pathogen Candida albicans promotes bladder colonization of group B Streptococcus. Front Cell Infect Microbiol 2020; 9: 437. doi: 10.3389/fcimb.2019.00437.
Felton T, Troke PF, Hope WW. Tissue penetration of antifungal agents. Clin Microbiol Rev 2014; 27(1): 68-88. doi: 10.1128/CMR.00046-13.
Downloads
Published
Versions
- 2023-07-06 (2)
- 2023-06-16 (1)