DISTRIBUTION OF CLOSTRIDIOIDES DIFFICILE RIBOTYPES ISOLATED FROM PATIENTS IN NORTH MACEDONIA - UPDATE
Keywords:
Clostridioides difficile, PCR ribotyping, North MacedoniaAbstract
As one of the major hospital pathogens Clostridioides difficile strains are constantly a subject of typing. PCR ribotyping is the standard molecular typing method for this bacterium in Europe.
The aim of this study was to determine the distribution of C. difficile ribotypes isolated from patients in North Macedonia.
Eighty isolates of C. difficile, isolated from fecal samples being sent to the Institute of Microbiology and Parasitology in Skopje in the period from 2016 to 2020 in order to diagnose C. difficile infection, were included.
PCR ribotyping was performed by using primers and protocols described by Bidet. The final determination of the ribotypes was done by using the software BioNumerics.
We determined the presence of 20 ribotypes. The most common ribotype was 001/072 represented with 32 (40%) isolates, followed by 014/020 represented with 10 (12,5%) isolates and ribotypes 002, 017 and 027 represented by 5 (6,2%) isolates each. All other ribotypes were represented by less than 4 isolates. All ribotype 001/072 isolates originated from patients of the “Mother Teresa” Clinical Center.
Unlike in most of the European countries where the hypervirulent ribotype 027 is the dominant one, for a prolonged period of time 001/072 has been the dominant C. difficile ribotype isolated from patients in our country. Considering that most of the isolates of this ribotype had originated from Surgical and Internal Diseases Clinics in the “Mother Teresa” Clinical Center, we might assume that it is the endemic C. difficile strain there.
References
Alcala L, Martin A, Marin M, Sanchez-Somolinos M, Catalan P, Pelaez T, et al. The undiagnosed cases of Clostridium difficile infection in a whole nation: where is the problem? Clin Microbiol Infect 2012; 18(7): E204- E213. doi: 10.1111/j.1469-0691. 2012.03883.x..
Waterfield S, Ahmed H, Jones IA, Burky R, Joshi LT. Isolation of Clostridioides difficile PCR Ribotype 027 from single-use hospital gown ties. J Med Microbiol 2022; 71(6). doi: 10.1099/jmm.0.001550.
Killgore GE, Kato H. Use of arbitrary primer PCR to type Clostridium difficile and comparison of results with those by immunoblot typing. J Clin Microbiol 1994; 32(6): 1591-3. doi: 10.1128/jcm.32.6.1591-1593.1994.
Killgore G, Thompson A, Johnson S, Brazier J, Kuijper E, Pepin J, et al. Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variablenumber tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene 128 sequence typing. J Clin Microbiol 2008; 46(2): 431-437. https://doi.org/10.1128/ JCM.01484-07.
Drudy D, Goorhuis B, Bakker D, Kyne L, van den Berg R, Fenelon L, et al. Clindamycin-resistant clone of Clostridium difficile PCR Ribotype 027, Europe. Emerg Infect Dis 2008; 14(9): 1485-1487. doi: 10.3201/eid1409.071346.
O'Grady K, Knight DR, Riley TV. Antimicrobial resistance in Clostridioides difficile. Eur J Clin Microbiol Infect Dis 2021; 40(12): 2459-2478. doi: 10.1007/s10096-021-04311-5.
Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL, Wilcox MH; EUCLID study group. Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill 2016; 21(29). doi: 10.2807/1560-7917.ES.2016.21.29.30294.
Mengoli M, Barone M, Fabbrini M, D'Amico F, Brigidi P, Turroni S. Make It Less difficile: Understanding Genetic Evolution and Global Spread of Clostridioides difficile. Genes (Basel) 2022; 13(12): 2200. doi: 10.3390/genes13122200.
Rupnik M, Tambic Andrasevic A, Trajkovska Dokic E, Matas I, Jovanovic M, Pasic S, et al. Distribution of Clostridium difficile PCR ribotypes and high proportion of 027 and 176 in some hospitals in four South Eastern European countries. Anaerobe 2016; 42: 142-144. doi: 10.1016/j.anaerobe.2016.10.005.
Mihajlov K, Andreska A, Ristovska N, Grdanoska T, Trajkovska-Dokic E. Distribution of Clostridium Difficile Ribotypes in Macedonian Patients and their Antimicrobial Susceptibility. Open Access Maced J Med Sci 2019; 7(12): 1896-1899. doi: 10.3889/oamjms.2019.482.
Gurtler V. Typing of Clostridium dificile strains by PCR-amplification of variable length 16s-23s rDNA spacer regions. Journal of General Microbiology 1993; 139(12): 3089-3097. doi: 10.1099/00221287-139-12-3089.
Cartwright CP, Stock F, Beekmann SE, Williams EC, Gill VJ. PCR amplification of rRNA intergenic spacer regions as a method for epidemiologic typing of Clostridium difficile. Journal of Clinical Microbiology 1995; 33(1): 184-187. doi: 10.1128/jcm. 33.1.184-187.1995.
O'Neill GL, Ogunsola FT, Brazier JS, Duerden BI. Modification of a PCR Ribotyping Method for Application as a Routine Typing Scheme for Clostridium difficile. Anaerobe 1996; 2(4): 205-209.
Bidet P, Barbut F, Lalande V, Burghoffer B, Petit JC. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 1999; 175(2): 261-266. doi: 10.1111/j.1574-6968.1999.tb13629.x.
Stubbs SLJ, Brazier JS, O’Neill GL, Duerden BI. PCR Targeted to the 16S-23S rRNA Gene Intergenic Spacer Region of Clostridium difficile and Construction of a Library Consisting of 116 Different PCR Ribotypes. Journal of Clinical Microbiology 1999; 37(2): 461-463. doi: 10.1128/JCM.37.2.461-463.1999.
Freeman J, Vernon K, Morris S, Nicholson S, Todhunter C, Longshaw Wilcox М, et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect 2015; 21(3): 248.e9-248.e16. doi: 10.1016/j.cmi.2014.09.017.
Imwattana К, Knight D, Kullin B, Collins D, Putsathit P, Kiratisin P, et al. Clostridium difficile ribotype 017 – characterization, evolution and epidemiology of the dominant strain in Asia. Emerging Microbes & Infections 2019; 8(1): 796-807. doi: 10.1080/22221751.2019.1621670.
Senoh M, Kato H. Molecular epidemiology of endemic Clostridioides difficile infection in Japan. Anaerobe 2022; 74: 102510. doi: 10.1016/j.anaerobe.2021.102510.
Ivanova K, Petrov P, Asseva G, Dobreva E, Ivanov I, Vatcheva-Dobrevska R, et al. Prevalence of Clostridium difficile PCR ribotypes in Bulgaria 2008–2010. Compt. rend. Acad. bulg. Sci 2011; 64 (7).
Cheng VC, Yam WC, Lam OT, Tsang JL, Tse EY, Siu GK, et al. Clostridium difficile isolates with increased sporulation: emergence of PCR ribotype 002 in Hong Kong. Eur J Clin Microbiol Infect Dis 2011; 30(11): 1371-1381. doi: 10.1007/s10096-011-1231-0.
Keel K, Brazier JS, Post KW, Weese S, Songer JG. Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol 2007; 45(6): 1963-1964. doi: 10.1128/JCM.00224-07.
Goorhuis A, Debast SB, van Leengoed LA, Harmanus C, Notermans DW, Bergwerff AA, et al. Clostridium difficile PCR ribotype 078: an emerging strain in humans and in pigs? J Clin Microbiol 2008; 46(3): 1157; author reply 1158. doi: 10.1128/JCM.01536-07.
Bandelj P, Knapič T, Rousseau J, Podgorelec M, Presetnik P, Vengust M, et al. Clostridioides difficile in bat guano. Comp Immunol Microbiol Infect Dis 2019; 65: 144-147. doi: 10.1016/j.cimid.2019.05.016.
Downloads
Published
Versions
- 2023-07-06 (2)
- 2023-06-16 (1)