DNA EXTRACTION FROM POST-MORTEM SAMPLES WITH DIFFERENT DEGREES OF DEGRADATION AND THEIR SUITABILITY FOR ION S5™ NEXT-GENERATION SEQUENCING SYSTEM

Authors

  • Viktorija Belakaposka Srpanova Institute of Forensic Medicine, Criminalistics and Medical Deontology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia
  • Sasho Risteski Institute of Forensic Medicine, Criminalistics and Medical Deontology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia
  • Natasha Bitoljanu Institute of Forensic Medicine, Criminalistics and Medical Deontology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia
  • Ljupcho Chakar Institute of Forensic Medicine, Criminalistics and Medical Deontology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia
  • Ana Ivcheva Institute of Forensic Medicine, Criminalistics and Medical Deontology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia
  • Goran Pavlovski Institute of Forensic Medicine, Criminalistics and Medical Deontology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia
  • Aleksandar Stankov Institute of Forensic Medicine, Criminalistics and Medical Deontology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia
  • Svetlana Krstevska Balkanov University Clinic for Hematology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia
  • Zlatko Jakovski Institute of Forensic Medicine, Criminalistics and Medical Deontology, Faculty of Medicine, Ss. Cyril and Methodius University, Skopje, Republic of North Macedonia

Keywords:

postmortem DNA extraction, DNA quantification, quality control, Ion S5 ™ next-generation sequencing system.

Abstract

Molecular analyses occupy a significant part of laboratory tests in forensic practice. Pre-prepared commercial kits used for DNA extraction are a great choice for samples provided by living people, but in forensic practice most of the samples that undergo molecular processing are often degraded and may pose a challenge in the laboratory. A special challenge is to provide quality genetic material from postmortem samples that would be suitable for further analysis with massively parallel sequencing.

The aim of this study was to introduce and optimize a method for extracting DNA from postmortem specimens with varying degrees of degradation, such as blood, FFPE, and frozen tissue, suitable for Ion S5 ™ sequencing system.

Extraction protocols were modified to increase the quantities and the total yield of DNA. Thus, we doubled the quantity of the analyzed sample, the quantity of buffers and lytic material, and we also extended the incubation time with elution buffer. Quantification was made using Qubit 3.0 fluorimeter, followed by PCR quantification.

Blood produced the best yield of DNA, followed by formalin-fixed paraffin embedded tissue. The type of the sample, the degree of post-mortem damage, as well as the storage time of the sample significantly affect the amount of DNA material as well as its suitability for further analysis. Blood remains the first choice of sample that is suitable for further analysis with the Ion S5 ™ next-generation sequencing system.

References

Carrick DM, Mehaffey MG, Sachs MC, Altekruse S, Camalier C, Chuaqui R, et al. Robustness of Next Generation Sequencing on Older Formalin-Fixed Paraffin-Embedded Tissue. PLoS One 2015; 10(7): e0127353. doi: 10.1371/journal.pone.0127353.

Barriales-Villa R, Gimeno-Blanes JR, Zorio-Grima E, Ripoll-Vera T, Evangelista-Masip A, Moya-Mitjans A, et al. Plan of Action for Inherited Cardiovascular Diseases: Synthesis of Recommendations and Action Algorithms. Rev Esp Cardiol (Engl Ed) 2016; 69(3): 300-309. doi: 10.1016/j.rec.2015.11.029.

Winkel BG, Holst AG, Theilade J, Kristensen IB, Thomsen JL, Ottesen GL, et al. Nationwide study of sudden cardiac death in persons aged 1-35 years. Eur Heart J 2011; 32(8): 983-990. doi: 10.1093/eurheartj/ehq428.

Tester DJ, Ackerman MJ. The role of molecular autopsy in unexplained sudden cardiac death. Curr Opin Cardiol 2006; 21(13): 166-172. doi: 10.1097/01.hco.0000221576.33501.83.

Kerick M, Isau M, Timmermann B, Sultmann H, Herwig R, Krobitsch S, et al. Targeted high throughput sequencing in clinical cancer settings: formaldehyde fixed-paraffin embedded (FFPE) tumor tissues, input amount and tumor heterogeneity. BMC Med Genomics 2011; 4: 68. doi: 10.1186/1755- 8794-4-68.

Basso C, Aguilera B, Banner J, Cohle S, d'Amati G, de Gouveia RH, et al. Association for European Cardiovascular Pathology. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch 2017; 471(6): 691-705. doi: 10.1007/s00428-017-2221-0.

Shojania KG, Burton EC. The vanishing nonforensic autopsy. N Engl J Med 2008; 358(9): 873-875. doi: 10.1056/NEJMp0707996.

Basso C, Burke M, Fornes P, Gallagher PJ, de Gouveia RH, Sheppard M, et al. Association for European Cardiovascular Pathology. Guidelines for autopsy investigation of sudden cardiac death. Virchows Arch 2008; 452(1): 11-18. doi: 10.1007/s00428-007-0505-5.

Williams C, Ponten F, Moberg C, Soderkvist P, Uhlen M, Ponten J, et al. A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 1999; 155(5): 1467-1471. doi: 10.1016/S0002-9440(10)65461-2.

Do H, Dobrovic A. Sequence artifacts in DNA from formalin-fixed tissues: causes and strategies for minimization. Clin Chem 2015; 61(1): 64-71. doi: 10.1373/clinchem. 2014.223040.

Corless CL, Spellman PT. Tackling formalin-fixed, paraffin-embedded tumor tissue with nextgeneration sequencing. Cancer Discov 2012; 2(1): 23-24. doi: 10.1158/ 2159-8290.CD-11-0319.

Basso C, Carturan E, Pilichou K, Rizzo S, Corrado D, Thiene G. Sudden cardiac death with normal heart: molecular autopsy. Cardiovasc Pathol 2010; 19(6): 321-325. doi: 10.1016/j.carpath.2010.02.003.

Scheiper S, Ramos-Luis E, Blanco-Verea A, Niess C, Beckmann BM, Schmidt U, et al. Sudden unexpected death in the young-Value of massive parallel sequencing in postmortem genetic analyses. Forensic Sci Int 2018; 293: 70-76. doi: 10.1016/j.forsciint.2018.09.034.

Lucena JS, García-Pavía P, Suárez-Mier MP, et al. editors. Clinico-pathological atlas of cardiovascular diseases. Switzerland: Springer International Publishing; 2015. [Google Scholar]

Thiene G, Basso C, Corrado D. Cardiovascular causes of sudden death In: Silver MD, Gotlieb AI, Schoen FJ, editors. Cardiovascular pathology. 3rd ed. New York (NY): Churchill Livingstone; 2001. p. 326–374. [Google Scholar]

Virmani R, Burke AP, Farb A. Sudden cardiac death. Cardiovasc Pathol. 2001; 10 (5): 211-218. doi: 10.1016/s1054-8807(01)00091-6.

Hayashi M, Shimizu W, Albert CM. The spectrum of epidemiology underlying sudden cardiac death. Circ Res 2015; 116(12): 1887-1906. doi: 10.1161/ CIRCRESAHA.116.304521.

Wong CX, Brown A, Lau DH, Chugh SS, Albert CM, Kalman JM, et al. Epidemiology of Sudden Cardiac Death: Global and Regional Perspectives. Heart Lung Circ 2019; 28(1): 6-14. doi: 10.1016/j.hlc.2018.08.026.

Bagnall RD, Weintraub RG, Ingles J, Duflou J, Yeates L, Lam L, et al. A prospective study of sudden cardiac death among children and young adults. N Engl J Med 2016; 374(25): 2441-2452. doi: 10.1056/NEJMoa1510687.

Behr ER, Casey A, Sheppard M, Wright M, Bowker TJ, Davies MJ, et al. Sudden arrhythmic death syndrome: a national survey of sudden unexplained cardiac death. Heart 2007; 93(5): 601-605. doi: 10.1136/hrt.2006.

Lahrouchi N, Raju H, Lodder EM, Papatheodorou E, Ware JS, Papadakis M, et al. Utility of post-mortem genetic testing in cases of sudden arrhythmic death syndrome. J Am Coll Cardiol 2017; 69(17): 2134-2145. doi: 10.1016/j.jacc.2017.02.046.

Barriales-Villa R, Gimeno-Blanes JR, Zorio-Grima E, Ripoll-Vera T, Evangelista-Masip A, Moya-Mitjans A, et al. Plan of action for inherited cardiovascular diseases: synthesis of recommendations and action algorithms. Rev Esp Cardiol. 2016; 69(3): 300-309. doi: 10.1016/j.rec.2015.11.029.

Chugh SS, Jui J, Gunson K, Stecker EC, John BT, Thompson B, et al. Current burden of sudden cardiac death: multiple source surveillance versus retrospective death certificate-based review in a large US community. J Am Coll Cardiol 2004; 44(6): 1268-1275. doi: 10.1016/j.jacc.2004.06.029.

Fishman GI, Chugh SS, Dimarco JP, Albert CM, Anderson ME, Bonow RO, et al. Sudden cardiac death prediction and prevention: report from a National Heart, Lung, and Blood Institute and Heart Rhythm Society Workshop. Circulation 2010; 122(22): 2335-2348. doi: 10.1161/CIRCULATIONAHA.110.976092.

Hua W, Zhang LF, Wu YF, Liu XQ, Guo DS, Zhou HL, et al. Incidence of sudden cardiac death in China: analysis of 4 regional populations. J Am Coll Cardiol 2009; 54(12): 1110-1118. doi: 10.1016/j.jacc.2009.06.016.

Qubit™ 3 Fluorometer Catalog Number Q33216 Publication Number MAN0010866 Revision B.0

Spencer DH, Sehn JK, Abel HJ, Watson MA, Pfeifer JD, Duncavage EJ. Comparison of clinical targeted next-generation sequence data from formalin-fixed and fresh-frozen tissue specimens. J Mol Diagn 2013; 15(5): 623-633. doi: 10.1016/j.jmoldx. 2013.05.004.

Downloads

Published

2023-06-16 — Updated on 2023-07-06

Versions

Issue

Section

Original Articles